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numerators and respective denominators (terms can 
be considered as statistically independent). The cor- 
relation coefficient p has then been calculated for the 
test structures; it is shown in the last column of 
Table 2. It is seen that plo+ 13 is slightly better than 
plo but the improvement is not really significant. 

one can go with the embedding scheme? It is too 
early to conclude thus. 

The authors thank Miss C. Chiarella for technical 
support. 

Concluding remarks 

A probabilistic theory has been presented that is 
based on the representation of a given triplet phase 
by a family of special quintet phases. The informa- 
tion contained in the basis and in the cross terms of 
such quintets is used for estimating the triplet phase. 
The formulation is quite general and includes the 
well known Plo formula as a particular case. The 
final formula, called P13, proved more efficient than 
the Cochran (1955) formula; in particular, it is able, 
as well as Plo, to recognize negative triplets. A strong 
correlation has been found between Plo and Pl3, 
both from the theoretical point of view and in 
practical applications. The additional information 
exploited by Pi3 does not seem to be of sufficient 
quality for substantially improving the efficiency of 
P~o and, in addition, Pl3 is much more time consum- 
ing. Does this theory demonstrate the limits to which 
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Abstract 

An algorithm to calculate Wyckoff positions of n_ 
dimensional space groups is developed and a detailed 
theoretical background is supplied. The algorithm 
is based on concepts of symmetry support and of 
translational normalizer 

1. Introduction 

It has become attractive to view quasicrystals as ob- 
jects whose structure can be derived from a higher- 
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dimensional crystal. This approach is based on the fact 
that the bright spots occurring in a diffraction pattern 
of a quasicrystal can be indexed by a finite number n, 
n > 3, of integers and that the positions and intensities 
of Bragg peaks display a point symmetry forbidden in 
three-dimensional crystals. The corresponding Z-module 
of rank n, sometimes called Fourier module (Janssen, 
1991) of the related density function, can be interpreted 
as the reciprocal lattice of a certain n-dimensional lat- 
tice T, invariant under the symmetry group L of the 
diffraction pattern, where L is a representative of some 
Laue class. Usually, from L and from the statistical 
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distribution of intensities, one is able to derive the point 
symmetry G. The n-dimensional lattice T together with 
the point group G define an arithmetic class (G, T) of 
n-dimensional space groups. Within such an arithmetic 
class, one will find the possible candidates that can be 
used for building up a structure model of the quasicrystal 
in question. The problem is that, up to now, there has 
been no generally accepted systematic description of 
positions of atoms in quasicrystals, which, in the case 
of crystals, is provided by the Wyckoff positions. Since 
there exists a relationship between crystal structures in 
n dimensions and quasicrystals, Wyckoff positions of 
n-dimensional space groups are of interest. 

In three dimensions, the Wyckoff positions of space 
groups were originally derived by P. Niggli (1919). 
Later, they were redetermined by R. W. G. Wyckoff 
(1922). They are given in International Tables for Crys- 
tallography (1983) (hereafter IT, 1983) in a standard 
form. 

In this paper, we present an algorithm to derive 
Wyckoff positions of an n-dimensional space group ~. 
The algorithm consists of the following three steps: 

In the first step, we calculate all finite cyclic subgroups 
of a given space group G that leave fixed some point 
of a chosen elementary parallelepiped, defined by n 
generating vectors of the lattice of ~. In the second 
step, these cyclic subgroups are used for generating the 
non-trivial stabilizers of all points within the elementary 
parallelepiped. In the third step, equivalence classes of 
these stabilizers under G are determined. Each of these 
equivalence classes yields one Wyckoff position of ~. 

The first step is the most involved and is dealt with in 
§§ 2, 3 and 4. In §§ 2 and 3, the concepts of symmetry 
supports and translational normalizers are employed to 
give lemmas to be used in deriving the required cyclic 
subgroups. These lemmas are used in § 4 to provide a 
method to determine all finite cyclic subgroups of G 
having a chosen cyclic point group C. An algorithm to 
derive Wyckoff positions of G is given in § 5. 

The present algorithm has been implemented in a 
computer program which is available on request from 
the authors. 

2. Symmetry supports and projection operators 

We will consider an n-dimensional space group ~ and 
a point group G isomorphic to the factor group G/T, 
where T is the translational subgroup (lattice) of ~. We 
denote by O the origin of the n-dimensional Euclidean 
space En and by Vn the difference space of En, i.e. 
the vector space associated with En, where each vector 
v E Vn represents one class of ordered pairs of points, 
{[z, y]; y = v + z}. Accordingly, one can put En - 
:c + Vn for an arbitrary point z E En. Similarly, any 
manifold M of En can be written as z + V, where the 
point z E M can be chosen quite arbitrarily and V is 

the difference space of the manifold M. A 'Wyckoff 
position' is defined as the set of all points that have 
equivalent stabilizers under the space group G. 

In order to determine the Wyckoff positions of G, the 
concept of symmetry support is employed: 

Let 37 be a subgroup of ~. The manifold of En that 
is left fixed by 37 is called the symmetry support of 
37 (Engel, 1986) and will be denoted as Supp (37). If 37 
contains non-zero translations then its symmetry support 
is empty. If not, 37 is of finite order and it must fix 
at least one point of En. Furthermore, it is clear that 
the symmetry support of the trivial group C1, which 
consists of the identity alone, is the whole space Er,, 
i.e. Supp (C1) = En. We note that a finite subgroup 
of G is uniquely determined by its point group and its 
symmetry support. 

Given two subgroups, 371 and 372, of ~, one has 

371 C_ 372 =~ Supp(37a) _D Supp (372). (1) 

It follows directly that 

Supp (.T'I U 372)= Supp (371) 71Supp (5r'2), (2) 

where 371 t3 372 is to be understood as a group formed 
by all possible products of a finite number of elements 
belonging either to 371 or to 372. We note that if 371 
and 372 are finite subgroups of ~ and if Supp (F1) f'l 
Supp (F2) = 0 then the group 371 t_J 372 cannot be 
a finite subgroup of G and so 371 t3 372 must contain 
some non-zero translation belonging to T. We note that 
Weigel, Veysseyre, Phan, Effantin & Billiet (1984) give 
the geometrical supports of the point-group operations. 

In order to determine the Wyckoff positions of a space 
group 9, one has to know the stabilizers of all points in 
En. Owing to the translational symmetry, however, it is 
sufficient to compute the stabilizers of those points lying 
within some characteristic cell associated with the lattice 
T, such as the Voronoi domain (the Wigner-Seitz cell) 
~2(0) of the origin O or, alternatively, the closed paral- 
lelepiped 69(0) spanned by the n vectors chosen as the 
lattice basis of T and placed so that its centre coincides 
with the origin O. We prefer the latter possibility. Our 
algorithm to find the stabilizers of all points within 69(0) 
is based on the well known basic fact that every finite 
group can be generated by its cyclic subgroups. A cyclic 
group is any group in which there exists an element such 
that all other group elements are powers of it. 

The basic idea to determine the stabilizer of a given 
point z E 69(0) is the following: There is always at least 
one cyclic subgroup of G, say C 1, that fixes the point 
z, though it may consist only of the identity. If another 
cyclic group C 2 C_ ~ leaves the point z fixed and is not 
a subgroup of C 1, then the group C 1 t3 C 2 is a proper 
supergroup of C 1 which, according to (2), must fix :c 
too. Taking C 1 t3 C z instead of C 1, one can look for 
a cyclic group C 3 _C ~ that will now play the role of 
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C 2 in the preceding step. Proceeding in such a way, one 
successively generates an ascending chain (3) of finite 
groups fixing the point x. 

C 1 C C 1 U C 2 C (C 1 U C 2) U C 3 C . . . .  (3) 

This chain is finite since every finite subgroup F of G 
is isomorphic to some subgroup of the point group G. 
The last group in the chain is the stabilizer of x and 
its symmetry support is the intersection of the symmetry 
supports of the distinct cyclic groups occurring in this 
chain. 

We note that, given an arbitrary set {91,..., 98 }, s > 1, 
of generating elements of a finite group, one can always 
construct an ascending chain analogous to (3) using the 
cyclic groups G 1, . . . ,C i, .... ,C  8, where C i consists of 
all powers of the ith generator. In Appendix 2, we give 
an algorithm to determine consecutively all elements of 
C 1 U C 2, (C 1 U C 2) U C 3 etc. and finally all elements 
of the finite group. 

The cyclic subgroups of ~ and their symmetry sup- 
ports can conveniently be determined by the use of two 
linear operators, defined for each cyclic subgroup of the 
point group G. Consider an element g of the point group 
G and denote its order by m. This element generates 
a cyclic subgroup of G that has just m elements: 
1 = gO = grog ,  g2 . . . ,gin-i;  we denote it by Cm. We 
introduce the following linear operators which map the 
lattice T homomorphically into itself. 

= i + g + g 2  + . . .  + g m - 1  (4) 

Q = ] - 9 .  (5) 

The operators, P and Q, belong to the commutative 
group ring associated with Cm and define an orthogonal 
splitting of Vn into a sum of two subspaces invariant 
under the action of Cm (see Appendix 1). Accordingly, 
one can write 

We note that V ° is a difference space of the symmetry 
support of each such finite cyclic subgroup of ~, if any, 
that has C,n as its point group. 

We define the projection operator P : Vn , V ° as 
follows: 

P = ( 1 / m ) P .  (r) 

The projection operator I - P : Vn , V 1, which is 
complementary to P,  can be e_xpressed as a product of 

two linear operators, Q and Q: 

I - P = Q . Q ,  (8) 

where Q is given by 

= l I  g = I  

Q = ( l / m ) [ I  + (I  + g) + (I  + g + g2) + ... 

~" + ( I  + g + g2 + ... + gin-2)] g # I.  

(9) 
We note that f o r g  ~_ I one has I - P  = Q = 0 so 

that Q can be any linear operator on Vn; in this case, we 

choose Q to be the identity operator. 

The linear operator Q • Vn > Vn leaves both 
subspaces, V ° and V 1, invariant. The action of this 
operator on Vn is faithful (cf. lemma A 1.2), i.e. for every 
v E Vn, there is just one vector w E Vn such that 
v = Q w .  

Consider the three-dimensional fourfold rotation 
along the z axis, i.e. 

g = (i 10) 0 0 . 
0 1 

A straightforward computation yields the projection 
operators 

Vn = V ° + V 1 (6) 

where (cf. lemma A 1.1) we put 

V ° = Im P = Ker Q, V 1 = Ker P = Im Q. 

m 

One defines kernel K e r P  - {t E V,~; P t  = 0} and 
image I m P  - { P t ;  t E Vn}. The vector space V ° 
is the greatest subspace of Vn on which the group Cm 
acts in a trivial manner; the superscript 0 is used to 
indicate the trivial action. The other space, V 1, is the 
orthogonal complement of V ° in Vn. For example, if g 
is a fourfold rotation in three dimensions, then the space 
V ° is one-dimensional and parallel to the direction of the 
rotational axis, while the space V 1 is two-dimensional 
and perpendicular to the rotational axis. 

( 00) 
P =  0 0 and I - P =  1 . 

0 1 0 

Applying the projection operators to an arbitrary vector 
v = (v~,vu,vz)  E Va, one determines the subspaces 
V ° and V 1. One has P v  = (0, 0, vz) and ( I  - P ) v  = 
(v~, vv, 0). Using the definitions (5) and (9), one finds 

( 10) 10) 
Q - -  - 1 0 and ~=~ 1 0 . 

0 0 0 3 

The following statement, which is implied by the 
decomposition of the projection operator I - P ,  proves 
to be useful (cf. § 4) for determining the origin of the 
symmetry support of a finite cyclic subgroup of ~. 
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Lemma 2.1 

For every t • V 1, there exists a vector 7- • V 1 such 

that t = Q T. It holds that 7- = Q t. 
By assumption, Pt  = 0 and hence ( ! -  P) t  = t. The 

statement then directly follows from (8) and from the 
invariance of V 1 under Cm. 

3. Projections of the translational 
group T and translational normalizer 

The projection operator P also provides valuable infor- 
mation on some properties of the translational subgroup 
T. Such information (to be given below) will play a 
central role in determining whether G contains a finite 
cyclic subgroup with the point group Cm or not. 

The application of the projection operators P and 
I - P to T yields the translational groups T O and T 1, 
respectively. Intersecting T with T O and T 1, one obtains 
two subgroups, To and T~, respectively. The groups 
T O and T 1 as well as To and T1 have only the zero 
translation in common and it holds that To + T1 C_ 
T c T o + T 1. If one of the two inclusions turns out 
to be an equality then T O coincides with To, T 1 with 
T1 and T is the direct sum of To and T1. In" the general 
case, however, T is only a subdirect product of T O and 
T 1 and the following three factor groups are mutually 
isomorphic (Hall, 1959): 

T/(To + T1) ~ T°/To "~ T1/T1. (10) 

By lemma A1.3, both To + T 1  and T O + T  1 are n- 
dimensional lattices. Consequently, all factor groups in 
(10) are finite. 

A subgroup T C_ T is a direct summand o f T  if 
the factor group T / T  is torsion free, i.e. no element 
of T / T  is of finite order. This condition implies that 

there_exists at least one subg__roup T C_ T such that 

T M T = {0} and T = T + T. We remark that even if 
T ~ To + 7'1, To as well as T1 is a direct summand of 
T. However, direct summands T1 and To of T such that 
To f3 T1 = To fq T1 = {0} and To + T1 = To + T1 = T 
are not invariant under Cm. An algorithm to determine 
generating vectors of To and T1 is described in Appendix 
3. 

Writing the coset decomposition of T mod (To + T1) 
as 

T = 0 tj + (To + T1) (11) 
j=0 

and expressing each representative vector tj as the sum 
o 1 of its components in 17 0 and V 1, i.e. t i = tj + tj, one 

directly obtains the coset decompositions T O mod To and 
T 1 mod TI" 

T° U 0 r l  ~J 1 = tj + To, = tj + T~. (12) 
j=0 j=o 

One comes to the following conclusion where, for 
typographical brevity, we denote the components of a 
vector v • Vn in the subspaces V ° and V 1 by v ° - P v 
and v 1 - ( I  - P )  v, respectively, so that v = v ° + v 1. 

Conclusion 3.1 

Given v~, v2 • T, then 

v0 _ vo • To ¢ ,  - • T1 ¢ ,  • + (To + 

The translational normalizer of the space group 6 is 
defined to consist of all those vectors v E Vn that fulfil 
the condition (1 - 9)v E T for each 9 E G. Since the 
translational normalizer is determined completely by the 
point group G and the translational gr6up T, we denote 
it as Trn (G, T). It follows from this definition that the 
action of any vector of Trn (G,T)  on G (the action 
being that of conjugation) will transform G into itself, i.e. 
{IIv}{glu}{II-v} • G for any v • Trn (G,T)  and any 
{gIu} • G. Consequently, the translational normalizer 
Trn (G,T)  is the translational subgroup of both the 
Euclidean and affine normalizers of the space group 
G, and also of any other space group having the point 
group G and translational subgroup T. The definition of 
translational normalizers together with further detailed 
information can be found in Kopsk~ (1993). 

In the case where G = Cm, one has ( 1 -  g)v • 
I m Q -  V 1 and K e r Q - -  V ° c T r n ( C m , T ) .  In order 
to determine the translational normalizer, one has to find 
only those vectors v • V 1 for which ( I - g ) v  - tl • T1. 
From lemma 2. l, v = Qtl so that all such vectors belong 

to the translational group Q 7'1. It follows that: 

Lemma 3.2 

The translational normalizer Trn (Cm, T) is the direct 
sum of the vector space V ° (viewed as an additive 

Abelian group) and the translational group Q T1, i.e. 

m 

Trn (Cm, T) = QT1 + V °. (13) 

m 

m 

For the discrete part Q T1 of Trn (Cm,T), one has 

-Q T1 D T1 D_ T1. 
For the reader's convenience, the group-subgroup 

relationships between the translational groups occurring 
above are presented in a diagramatic form (see Fig. 1). 

A subgroup G' of a space group G is called an 
equitranslational subgroup (t subgroup) if it contains 
the entire translational subgroup T of G. G' C_ ~ is 
an equiclass subgroup (k subgroup) of G if the factor 
groups ~ / T  and G' /T  ~, where T '  - ~'  fq T, are mu- 
tually isomorphic. By Hermann's well known theorem 
on subgroups of space groups (Hermann, 1929), every 
subgroup of ~, either finite or infinite, that has a point 
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group G,,~ is contained in an equitranslational subgroup 
of G, say 7~, that is an equiclass supergroup of that 
subgroup. By definition, Trn (Cm, T) is a translational 
normalizer of 7"f so that any vector r E Trn (Urn,T) 
transforms 7-/ into itself. 

Assume that ~ contains a finite subgroup Cm that 
is simultaneously an equiclass subgroup of 7-/. The 
very sense of the decomposition (13) consists in the 
following: Owing to the trivial action of Cm on V °, 
any vector TO E V ° transforms Cm into itself. Any other 
vector T' E Trn (Cm, T), when applied to C,,,, yields 
another finite equiclass subgroup of 7-/. This implies 
that there are just as many distinct finite equiclass 
subgroups of 7~ as there are vectors in the discrete part 
of Trn (Gin, T). We shall see that this statement is a 
direct consequence of an equation to be satisfied by the 
generating symmetry operation of Cm. 

4. Finite cyclic subgroups of 

It is known that all elements of an arbitrary finite 
subgroup of ~ belong to distinct cosets in the coset 
decomposition 

:{II0}T + {g~lu2}T + . . .  + {gilui}T + . . .  

+ {gplup}T, (14) 

where p is the order of the point group G. Therefore, in 
order to find the finite cyclic subgroups of G, one has 
to determine those cosets in (14) that contain symmetry 
operations of finite order. It is sufficient, however, to 

I;, = I'" + I" 

Tr,,IC, T) = I , ~  

i 

1,,I 

Fig. 1. Group--subgroup relationships between translational groups T and 
QT,. 

check only those cosets {gi~ [uij }T for which the ro- 
tational parts g~j generate distinct cyclic subgroups of 
G. 

The only element of finite order in the coset {I[0}T 
is {II0}, which forms the trivial cyclic group C1. The 
group C1 corresponds to the Wyckoff position of lowest 
symmetry. 

A method to establish the occurrence of an element 
of finite order in the other cosets in (14) is as follows: 

Let us consider the ith coset {gilui} T, i >_ 2. In this 
coset, there will be a symmetry operation of finite order 
if a translation t E T can be chosen such that 

{gilui + t} m' = {IlO}, (15) 

where mi is the order of the cyclic subgroup Cm, 
of G generated by the rotational part gi. With 
P i  - I + gi + g2 + ... + g ~ , - l ,  the condition (15) 
can be rewritten as 

P i  (ui + t) = O. (16) 

According to the preceding section, the operators Pi 
and Qi = ( 1 -  gi) define an orthogonal splitting 
of Vn into a sum of two complementary subspaces 
V 1 ~ K e r P i  = ImQ/  and V ° - I m P i  = KerQi ,  
where the corresponding projection operators are 
Pi - 1-Z--Pi and I - Pi, respectively. It holds that 

m i  

any translation of T must occur in one of finitely many 
cosets of the coset decomposition T mod (To + T1): 

T = U tj + (To + T1). (]-[) 
/=0  

We state: 

Lemma 4.1 

The coset {gi [ui}T contains a symmetry operation of 
finite order only if there is a coset tjl + (To + T1) for 
which the following condition holds: 

P,(~,, + t~,) e To. (17) 

If such a coset exists, it is unique. 
The proof is straightforward: one can replace Pi  in 

(16) with the projection operator Pi and t E tjl + (To + 
T1) for some j l .  

The uniqueness of the coset tja + (To + T1) to which 
all solutions of (16) belong follows from conclusion 3.1. 

Suppose that we find a coset tji + (To + T1) for 
which (17) is true, i.e. to = Pi (ui + t#,) E To. Then, 
t = t j x - t o  is a solution of (16)and {g~lui+t} generates 
a finite subgroup of 6. According to lemma 2.1, there 
exists a vector ~i E V 1 such that ui + t = (I  - gi)~i = 
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Qi ~i. One has 

~i = Qi (ui + t), (18) 

m 

where the operator Qi is defined analogously to (9). 
Hence, we conclude that the element {9ilui + t} gener- 
ates a cyclic group Cm, of order mi which leaves a point 
xi - 0 + ~i of En fixed. Moreover, taking into account 
that the subspace of V,~ on which 9~ acts trivially is just 
V °, one has 

Supp (Cm~) = xi + V °. (19) 

We note that the norm II  ll of vector ~i yields the 
distance of manifold Supp (gin,) from the origin O 
because ~i is orthogonal to all vectors of V °. We 
establish that whenever we express a manifold of En 
as a (formal) sum of one of its points and an associated 
difference space, then this point will be chosen as the 
origin of the manifold. 

In addition to {gilui -F t}, the coset {g~lu~}T con- 
tains infinitely many symmetry operations of order mi,  
namely {9ilui + t + t~l}, t' 1 E T1. Since Pi projects the 
whole space V 1 onto the zero vector 0, it follows that, 
for every t~ C T1, the translation t' = t + t~ also satisfies 
(16). For convenience, the cyclic group generated by the 
symmetry operation {9ilUi q- t -}- tll}, t'l E T1, will be 
denoted by Cm,(t'l). The symmetry support of C~,(t~l) 
is just a copy of Supp (din,)__ being parallel to it and 

shifted with respect to it by Qi t~ c V 1, i.e. 

- -  ! 

Supp (Cm, (t])) = 0 -{-" -Qi(ui + t q- t l)  + V ° 
- -  ! 

- S u p p ( C m , ) + Q i t l .  (19a) 

This corresponds to the fact that 

{9~[u~ + t + t~} - {I[Q~ t~} {g~lu~ + t} { I 1 -  Q~t'~}. 
(2o) 

Equations (19a) and (20) imply 

Theorem 4.2 

The set of all finite cyclic subgroups of ~, being 
generated by an element of the coset {#i lui }T, as well as 
the set of their symmetry supports form an orbit under 

the discrete part Qi T1 of the translational normalizer 
Trn (Cm,, T); the action, in the former case, being taken 
as conjugation. 

It is convenient to split both orbits under T1. The 
main advantage of such a splitting consists in the fact 
that one easily recognizes whether the symmetry support 
Supp(dm,( t~) )  is in the same suborbit as Supp(gm~) 

or not. If so, the shift vector Qi (t~) belongs to T1 
and, hence, this vector must have integral components, 
if expressed in terms of the chosen lattice basis of T. 

Moreover, if Qi(t~) c T1 then the groups Cm,(t~) and 
Cm~ are conjugate subgroups of G and, therefore, their 
symmetry supports must belong to the same Wyckoff 
position. We note that if a symmetry support is found 
to be an interior point of the parallelepiped O(0) then 
all other symmetry supports within the same suborbit 
will not intersect O(0). Otherwise, if the intersection 
is not empty, it must contain at least one point of some 
lower-dimensional face of 0(0).  Then the corresponding 
suborbit may contain another manifold that intersects 
69(0). There can be at most 2 TM, n I ~ dim V 1, such 
manifolds since there is at most 2 m translation vectors 
in 711 that can bring such a face into an equivalent face 
of 0(0).  We remark that every lower-dimensional face 
of the parallelepiped is exposed and so it contains no 
interior point. In such a case when T ¢ To + T1, it 
may also happen that no symmetry support of a certain 
suborbit will intersect 0(0).  

In order to split both orbits into suborbits under 7'1, 
one has only to decompose the discrete part of the 
translational normalizer Trn (Cm,, T) mod TI. We write 

m 

-OiT1 = (TI +T1)  U (T2+T1) U . . .  U (T~, +T1) ,  (21) 

m 

where si is the index of T1 in -QiT1, i.e. si = [QiT1 " T1]. 
The number of distinct suborbits under 7'1 is then equal 
to si and, as a representative of the j th suborbit, j E 
{ 1,..., si }, one can choose the manifold (O + ~i + rj) + 
V ° -- (O + aij) + V °, which is the symmetry support 
of the cyclic group Cm,(Qi rj) = {I lr j  } Cm, { I I - - r j  } -- 
C (j) i.e. SupptC (j)x (O + ) + V °. m i  , ~ m i  ] ~ 0"i3 

With the use of the representative manifold (O + 
aij) + V ° of the j th suborbit, it is straightforward 
to obtain those manifolds of the suborbit that intersect 
O(0). One has to find all vectors t~j E T1, if any, 
for which there exists a vector O.)ij E V 0 such that  
O + aij + t~j + wij E 69(0). Each such vector t~j then 
determines a manifold (O + vii + t~j) + V ° with the 
required property. 

We notice that the si suborbits may belong to s~ 
distinct Wyckoff positions if ( I  - Pi) T - T 1 = T1, i.e. 
if T = To + 7'1. Otherwise, the number of distinct 
Wyckoff positions to which these suborbits belong must 
be less than si. The reason is the following: 

A cyclic subgroup of G that is a conjugate of Cm, by 
means of a translation t '  E T can also be obtained if the 
conjugation is performed with the projection ( 1 - P i ) t '  E 
T ~ of t '  instead. Consequ__ently, the si suborbits can 

belong at most to di = [-QiT1 " T 1] distinct Wyckoff 
positions and one has si = di.  [T" (T0-I- T1)] [cf. (10)]. 
One may then conclude: 

Conclusion 4.3 

The cyclic subgroups of G, generated by a symmetry 
operation of the ith coset in (14), and leaving some 
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point of 19(0) fixed, can be classified at most into 

si =- [QiT1 " T1] orbits of subgroups conjugated to each 
other by some translation of T1. The correspo__nding 

symmetry supports can belong to at most di - [QiT1 • 
T 1] distinct Wyckoff positions. 

5. An algorithm to compute 
Wyckoff positions in n dimensions 

The present algorithm to compute the Wyckoff positions 
of an n-dimensional space group 6 is based on equality 
(2). It implies [cf. text related to (3)] that the symmetry 
support of the stabilizer of an arbitrary point x E En is 
given by the intersection of the symmetry supports of 
all cyclic subgroups of that stabilizer. We remark that 
only those cyclic subgroups that generate the stabilizer 
are necessary. Consequently, one can determine the 
stabilizers of all points within the elementary cell 19(0) 
by consecutive intersecting of the symmetry supports of 
all those cyclic subgroups of 6 that leave some point 
of 19(0) fixed. The algorithm consists of the following 
three main steps. 

In the first step, for each cyclic subgroup C ~ C1 
of the point group G, one determines if there is a finite 
subgroup of 6 with the point group C. If so, there exists 
an infinite set of finite cyclic subgroups of 6 having point 
group C. This set forms an orbit under the action of the 
discrete part of the translational normalizer Trn (C, T) 
and the symmetry supports of all groups involved in the 
orbit are parallel to each other. One conveniently divides 
this orbit into finitely many suborbits under T1, which 
is the greatest common subgroup of the translational 
subgroup T and the discrete part of Trn (C, T). Within 
each suborbit one then finds those subgroups of 6 whose 
symmetry supports intersect the elementary cell 19(0), 
using a representative manifold of the corresponding 
suborbit of symmetry supports (cf. § 4). As stated in the 
preceding section, each suborbit may contain a different 
number of such subgroups: either none, or only one 
subgroup whose symmetry support is an interior point 
of 19(0), or else a finite number of subgroups leaving a 
point of a lower-dimensional face of 19(0) fixed. As a 
result, one obtains a finite set of (finite) subgroups of 6 
having point group C. 

For convenience, we call the set of their symmetry 
supports a family or a C-family in order to indicate the 
corresponding point group. Having established families 
of symmetry supports for all non-trivial cyclic subgroups 
of G, if any, one arrives at a finite set of manifolds 
intersecting 19(0). This set is used to generate the 
stabilizers of all points within 19(0) by intersecting the 
manifolds involved. The splitting of the set into families 
is suitable since the intersection of any two symmetry 
supports within a family is a priori known to be empty, 
and thus only manifolds belonging to distinct families 
have to be intersected. We remark that, among the 

families of symmetry supports, inclusion relations may 
occur. For example, the symmetry support of the cyclic 
site-symmetry group C4 of order four coincides with 
the symmetry support of its subgroup C2 of order two. 
Consequently, the Ca-family is completely included in 
the C2-family. 

In the second step, one takes a pair of families, one af- 
ter another, and successively intersects every symmetry 
support of one family with every symmetry support of 
the other family. If the intersection of the two symmetry 
supports in question is empty, another two symmetry 
supports are taken from the chosen pair of families and 
their intersection is checked. This process is repeated 
until a non-empty manifold is found. It may happen that 
such a manifold does not intersect the elementary cell 
69(0). It is then discarded and one continues intersect- 
ing the symmetry supports as described above until a 
manifold that intersects 19(0) is obtained. Suppose that 
this manifold arises as an intersection of two symmetry 
supports from C I- and C2-families. There are two 
possibilities: either this manifold coincides with some 
of the supports computed previously or it is a new one. 
In both cases, one obtains a new finite group ~ "  C_ 6 
whose symmetry support is the computed manifold. In 
the latter case, the point group F ' of .T'  is just C I t_J C 2. 
In the former case, if the corresponding manifold was 
already obtained as an intersection of symmetry supports 

--1 ~2 ~ " " F '  belonging to C - ,  -, . . . .  C-famflms, then is 
- - 1  - - 2  

generated by cyclic groups C , C . . . . .  C-~ and also 
by C t and C 2. 

After having intersected each pair of symmetry sup- 
ports belonging to distinct families, one obtains finitely 
many new symmetry supports. In the case where no new 
symmetry support is found, one goes to step three. Other- 
wise, each of these new symmetry supports is intersected 
again with all symmetry supports of those C-families for 
which C is not a subgroup of the corresponding point 
group in order to produce further new finite subgroups 
of 6 as well as further new symmetry supports. This 
procedure is repeated until no new symmetry support 
O c c u r s .  

In the third step, all the symmetry supports found are 
classified into equivalence classes of manifolds under the 
action of 6 using the following fact: 

Two manifolds ( 0  + ~a) + V a and ( 0  + ~b) "+" v b  
are equivalent under ~ if and only if 

(1) an element g of the point group G exists so that 
g V  ~ = Vb; 

(2) for any symmetry operation {glu}  E 6, a transla- 
tion t E T can be chosen so that u + g~a - ~b + t E V b. 

Condition (1) is trivially satisfied if both V ~ and 
V b contain only the zero vector. Otherwise, the Gauss 
exchange routine (Nef, 1966) is used to check if the 
manifolds O + g V  ~ and 0 + V b coincide. 

Condition (2) can be verified by a straightforward 
computation. Given a basis {vi; i = 1 , . . . ,  dim V b} of 
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~-~ d i m  V b 
V b, one has to find a vector w - z..,i=l xivi E V b, if 
any, which solves the following congruence: 

d i m  V b 

u + g (a - ~b + E xivi =- O mod T. 
i = 1  

By definition, each such equivalence class of the 
symmetry supports represents one Wyckoff position. For 
each Wyckoff position of G, a representative manifold 
(O + ~) + V ° is chosen according to some fixed rules. 

6. An  il lustrative example:  space group P-32/ml 

In order to illustrate the algorithm, we apply it to 
the three-dimensional space group P52/ml where the 
site symmetry 3 2 / m l  occurs at the origin O and the 
orientation of the threefold axis coincides with the 
positive direction of the z axis. For typographical 
brevity, instead of the notation used in IT (1983), 
we introduce the following symbols for the point- 
symmetry operations of 3 2 / m 1 : 5  + _= 5 + (0,0, z), 
3+ - 3+ (o ,o ,z ) ,  m - _ _ _  m ' - m ( x , 2 x ,  z), 
m" -- m(2x, x,z), 2 _ 2(x,x,0) ,  2' = 2(x,0,0),  
2" = 2(0, y, 0) and T =- 1(0, 0, 0). As generators of 

P52/ml,  one can choose sixfold rotoinversion {3+10}, 
reflection {ml0 } and translations by the basis vectors of 
the lattice T, a - (1, 0, 0), b = (0, 1, 0) and c _ (0, 0, 1). 
One can write the coset decomposition of P52/ml 
modulo translational subgroup T as follows: 

P52/ml = {ll0}T + {3+I0}T + {3-I0}T + {ml0}T 
+ {m'10}T + {ml0}T + {TI0}T 

+ {5+I0}T + {3-10}T + {210}T 
+ {2'[0}T + {210}T. 

Since the space group chosen is a symmorphic one, the 
condition of lemma 4.1 is trivially satisfied for all coset 
representatives. Consequently, each non-trivial subgroup 
of the point group 52/ml occurs as a point group of 
infinitely many finite subgroups of P52/m1. The point 
group 52/ml contains ten cyclic subgroups 3, 3, m, 
m',  m", 2, 2', 2", 1 and 1 so that all finite cyclic 
subgroups of P52/ml belong to ten mutually disjoint 
sets, each of which consists of groups with a given 
point group. Each such set can be represented by a group 
leaving the origin O fixed. The ten representative groups 
are generated by the following coset representatives: 

{UI0}, {3+10}, {m[0}, {m'[0}, {m"10}, {210}, {2'10}, 
{2"10}, {TI0} and { 1[0}. We recall that (by theorem 4.2) 
a set of all finite cyclic subgroups with a point group C 
forms an orbit under the discrete part of the translational 
normalizer Trn (C, T). In order to find those groups 
of the orbit whose symmetry supports intersect the 
elementary cell ~(0), one has first to determine the 
translational groups T °, T 1, To, 7'1 and the discrete 

m . m  

part QT1 of Trn (C, T) and then to decompose QT1 
into cosets in terms of T1. The case C _= C1 is trivial: 
T ° = T o = T a n d T  1 = T I = Q T 1  = {0}. 

Consider the twofold rotation 2'. Using definition (7) 
of the projection operator P,  one finds 

1(i 10)  (i10) P = ~  0 0 and I - P = - ~  2 0 . 
0 0 0 2 

Applying P and I - P to the lattice basis {a, b, c} of 
T, one obtains 

1 p  1 
P(-b )=-~  a= - = (I P)b la  + b, 

P c = ( I - P ) a = O ,  ( I - P ) c = c .  

Accordingly, T o - P T is generated by a/2 and T 1 - 
(I - P)T by a/2 + b and c. It follows that a generates 
To - T f3 T o and {a+2b, c} is a basis ofT1 - T n T 1. 

Since Q = 1 a/2 b, c/2 form 3I, then vectors + a 

basis of the discrete part QT1 of translational normalizer 

Trn (2', T). The coset decomposition Q 7'1 rood 7'1 (22) 
implies that an orbit of all finite cyclic subgroups 

- -  a c 
QTI=(O+Tx)  U (-~+b+T~) U (5+T1) 

a c 
tO (2 + b + ~ + T1) (22) 

of P52/ml with the point group 2' as well as an 
orbit of their symmetry supports splits under 7'1 into 
four suborbits. Considering that a generates To, and 
thus also the difference space V ° of all symmetry 
supports within the orbit, one directly writes down 
representative symmetry supports of the four suborbits: 

1 (x,0,0),  ( x +  ½,1,0), (x,0,½) and (x + 1 ,1 ,3) .  The 
results for all ten cyclic point groups are summarized 
in Table 1. 

With the use of translations a + 2 b, c generating T1 
and translation a generating To, it is straightforward to 
establish the 2'-family of symmetry supports. Consider 

1 1) and (½ 1, 1) ~f "the origins (0,0,0), (3,1,0) ,  (0,0, 2 
representative manifolds. For each suborbit, one has to 
find all such translations t = ~?a + k(a + 2b) + .~c - 
(~7 + k, 2k,/), where ~7 is real and k, l are integers, 
that bring the corresponding origin into a poim of 
69(0). One can readily see that there exists a t~vial 
solution t = (0, 0,0) for the first suborbit and two 
solutions t~ = (0, 0, 0) and t2 = (0, 0 , - 1 )  for the third 
suborbit. For the second and the last suborbits there is 
no solution (note that T # To + T1). The 2'-family then 

1 consists of three symmetry supports, (x, 0, 0), (x,0, 3) 
and (x, 0, - 1 ) .  

One can avoid a lot of superfluous calculations i;~ the 
second step if pairs of cyclic subgroups of 52/mi are 
classified into equivalence classes in the following way. 
Given a point group G, two pairs of cyclic subgroups, 
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'Fable 1. Translational groups specific to cyclic subgroups of 32 /ml  and representatives of orbits of symmetry 
supports 

Symbol of Generating translations of Representative 
cyclic symmetry  supports of 

point group T O To Ta T 1 ~ 7"1 suborbits under T1 

o = ~,b,~ = ~,b,~ (o,o,o),(o,o,  ½) 

c = a, b = a(b), (0, 0, Z) 
3 

( ~ , - ~ , z ) , ( - ~  5,5, z) 

m a - b a + b  = ( x , - x , z )  2 ,e ~ - b , c  ~ + b  2 ( ~ + ~ , - ~ + ~ , z )  

(z, 2z, z) m'  a + 2 b  c a + 2 b ,  c a a = 1 
2 ' 2 (x + -~,2x, z)  

m" 2 a + b  c 2 a + b , c  b b (2y, y ,z )  
2 ' ~ = (2y, y + ~, ~) 

1 o) 2 a + b  a + b  a b,c a - b  c ( x , z , O ) , ( z + ½ , z - 7 ,  
2 - , c  2 ' 2  ( z , z ,  ½ ) , ( x + '  1_ 1_) 

~X-- 2~ 2 

2' a ~ c (x,O,O), (x + ~ 1,0) 
a a + 2b, c ,c  a 2 - ~ ' 2  (x,O, 1_~ (x ~' 1_) 

2J, + 7, 1, 2 

z '  b ~ ~ (o, ~, o), (1, ~, + ~,o) 
b 2 a + b , c  , c  2a~2 b , ~  (O,Y,½),(1 ,y+½,½) 

a b e (o,o,o),(½,o,o),(o,~,o),(o,o,~) 1 0 = a , b , c  = 2 '  2 ' 2  (1_ I I 1 a a 1_) (1 1 2 , ~ , ~ ) ,  (~, ~ ,  ~,~, (o, ~, ~), o, o) 

1 a , b , c  = 0 = = ( x , y , z )  

(C 1, C z) and (~ l ,~Z) ,  are equivalent if they generate 
the same subgroup of G. For example, pair (3, m) is 
equivalent to (m, 2') since both pairs generate the point 
group 32/ml.  Consequently, symmetry support of an 
equiclass finite subgroup of P-32/m1 must occur as 
an intersection of certain two-symmetry supports that 
belong either to 3- and m-families or to m- and 2'- 
families. We note that, for n-dimensional point groups 
of high order, the effort exerted for establishing such 
a classification may become comparable with the effort 
saved; moreover, one might classify not only pairs but 
also k-tuples, k _> 3. In that case, one might find 
it more advantageous to apply the algorithm without 
introducing such a classification. Also, in the case of 
calculations performed by means of a computer, it seems 
to be suitable not to incorporate the classification into a 
computer program. 

In our case, the nine non-trivial cyclic subgroups 
yield 36 pairs, which fall into six equivalence classes, 
corresponding to point groups 32 /ml ,  3ml,  321, 2/m, 
2'/m' and 2"/m". One can choose the following repre- 
sentative pairs: (3, m), (3, m), (3,2'), (m,] ) ,  (m ' , ] )  
and (m",l) .  For each of these pairs, it is routine 
to obtain the intersections of manifolds that belong 
to two corresponding families. In fact, most of these 
intersections are almost obvious and they can be read 
directly from Table 1. 

All points of the 3-family and all lines of the 3- 
family lie in the plane ( x , - x , z )  of the m-family. 
Accordingly, the 3-family coincides with the -32/ml- 
family and the 3-family with the 3ml-family. For the 
pair (3, 2'), only line (0, 0, z) of the 3-family has a non- 
empty intersection with the lines of the 2'-family; as a 
result, however, one obtains all points of the -32/ml- 
family. It is straightforward to decide which of the 25 
points of the 1-family belong to the planes of the m-, 
m'- and m"-families. One need not consider three points 

1 belonging to the 32/ml-family: (0, 0, 0), (0, 0, 3) and 
(0, 0 , -  ½). Finally, one obtains all families of symmetry 
supports that correspond to stabilizers of points within 
69(0). The results are given in Table 2. 

One may also determine which symmetry supports 
of a C-family are equivalent under P-32/ml. For that 
purpose, one can apply the criteria stated at the end 
of § 5, but in a slightly different form: one supplies 
condition (1) with an additional requirement that an 
element 9 E G must satisfy 9Cg -1 = C. Consequently, 
one divides the C-family into subsets of equivalent 
manifolds. For each family, we give the representative 
manifolds of all such subsets in the last column of Table 
2. 

In the last step, by applying the original criteria of 
§ 5 to the representative manifolds, one establishes the 
Wyckoff positions of space group P32/ml.  
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Table 2. F a m i l i e s  o f  s y m m e t r y  suppor t s  o f  s u b g r o u p s  o f  3 2 / m l  

Symbol of Family of symmetry supports Representative 
point group manifolds 

~2/.~: (o, o, o): (o, o, ~), (o, o,-~) (o,o,o);(o,o, b 

3ml  (0,0, 1 : 1 ½, z) 1 1 ~); (:, - ~, z), (- :, (o, o, ~); (:, - : ,  ~) 

' o),+(~, 'o); 2/m +(½' : '  - ~ '  1 . 1 1 1 , , ) ÷ r , ,  ,) (½,~,o),(~,~,~) _,~ ÷~__~ _1 _1) +(~,-~,:, ,_,:,: ,-~, ±(~,~,~,,-, ~,~,~ , 

1 1 I 2 ' /m'  ±(½, O, 0); ±(½ ,0,1-)2 , ±(½, O, -½) (~,0,0); (~,0, ~) 

' o ) ;+ (o , '  ½) ,± (o ,~ , - ' - )  (o,~,o);(o,: ,~) '  ' 2"/m" ±(0, :, 7, 2 

m (x, - x ,  z),  (x + ~, - x  + ½,z),  (x -- 7,~ - x  -- ½, z)  (x, - x ,  z)  

1 i 2x, z) (z,2z, z) m' (x, 2z, z), (x + :, 2z, z), (z - 7, 

1 1 z) (2y, y, z) m" (2y , y , z ) , ( 2y , y  + : , z ) , ( 2 y , y  - :, 

l 1 0 ) ; ( Z -  1 32+1 0); ( z , x ,O) , ( x  + : , x -  :, :, :, 

2 (x,x, '-)  ( z + '  '- '-) ( x -  ' ' '-) ~,~+ (~,~,o): (z,x,½) 2 '~ ~ X - - 2 , ~ 2  .~ 2 ~ 2  '~ ' ~--:-)(z- '  +~ 1) (x,~,-~),(~+:,~-~, ~, ~,z ~,-: 

~' (z, o, o); (~, o, ~), (~, o, -½) (z, o, o); (z, o, ~) 

2" (o,~,o); (o,~,-')(o, ~,-'-) , ~ (0, Y, 0); (0, Y, ! ) 

: (z,y,z) (x,y,z) 
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7. Concluding  remarks  

The algorithm presented is dimension independent and 
as such it can be used for the determination of Wyckoff 
positions of any space group in an arbitrary dimension 
n. As shown in § 6, one can perform the corresponding 
computations by hand, in which case certain modifica- 
tions may prove useful. However, for dimensions higher 
than three, especially when the point group of a given 
space group has a high order, it is more suitable to 
accomplish such calculations by means of a computer. 
For that reason, a computer program in C has been 
written. It can serve two purposes: either one can use 
this program to analyse one's individual problems or, if 
needed, one can also calculate all Wyckoff positions for 
a given collection of higher-dimensional space groups. 
In this connection, we note that the determination of 
Wyckoff positions of four-dimensional space groups is 
now a feasible project. 

In order to run the program, one has to meet the fol- 
lowing software and hardware requirements. One must 
have a C compiler that complies with the ANSI C 
standard. The hardware requirements depend on the 
space dimension and also on the order of an occurring 
point group. If the dimension n <_ 3 or if n > 4 and the 
order of the point group of a space group in question 
is relatively small, the program may run on a PC-486 
(also a 386 may be used) with 1-2 Mbyte RAM. In other 
cases, one will need a workstation with at least 32 Mbyte 
RAM (we recommend 64 Mbyte RAM). 

We note that the use of Wyckoff positions in analysing 
a diffraction pattem is very limited. The special extinc- 
tion conditions occurring for the Wyckoff positions of 
high symmetry are rarely met in practice. In our opinion, 
the best use of the investigation of Wyckoff positions is 
for a complete understanding of the space groups. This 
is a prerequisite for any crystal-structure determination. 
Quasicrystals are three dimensional and a possible model 
is a projection of a slice through a higher-dimensional 
crystal of suitable symmetry. The projection corresponds 
to an intersection of Fourier space. 
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Academy of Sciences of the Czech Republic. 

One of us (JF) acknowledges the hospitality of and 
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A P P E N D I X  1 
Orthogonal  splittings of  Vn 

under  a finite cyclic point group 

In this Appendix, we supply the proofs of statements 
used in §§ 2 and 3. We will consider a finite cyclic poin~ 
group generated by a symmetry operation g of order 
m >_ 2; it will be denoted as Cm. With the cyclic group 
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Cm there is associated a commutative group ring whose 
m--1 elements are sums of the form )--~j=0 zig j, where each 

zj is an integer. Such a sum is a linear operator acting 
on the vector space Vn according to the prescription 

m - 1  m - 1  
()--~--o z jgJ ) ,  v = )"~=0 z3(g~ • v) for an arbitrary 
v E Vn. We choose the following m linear operators 
from the commutative group ring. 

= I + g + g2 + ... + gm-~ (AI.1) 

Q(J) = I - g J ,  j = 1 , . . . , m -  1. (A1.2) 

A straightforward computation shows that 

~2 =- p .  p = m P  

P .  Q(Y) = Q(~). P = o, 

(A1.3) 

j = 1 , . . . , m -  1. (A1.4) 

The m linear operators given by (AI.1) and (A1.2) yield 
m splittings (A1.5) of Vn into two orthogonal subspaces 
each, which, owing to the commutativity of the group 
ring, are invariant under the action of Cm. 

ImP(d) = KerQ(J2). The subgroup Cm/d of Cm, 

generated by the element gd, acts on Im p(d) in a trivial 
way. By (A1.6), it also holds that K e r P  _D Im Q(J2) =_ 
KerP(d) and I m P  C KerQ(J2) = Imp(d) .  Since 
Im P as well as Im p(d) are the greatest subspaces of 
Vn on which, in corresponding order, Cm and C~/d  
act trivially, all splittings in (A1.5) are orthogonal. Only 
relatively few of these m splittings are mutually distinct: 

The number of distinct splittings of Vn in (A1.5) 
equals at most the number of all subgroups of Cm 
excluding the trivial one to which a trivial splitting 
{0} + Vn corresponds. 

Using (A1.3), we define the projection operators P 
and Q as follows: 

P = ( 1 / m ) P  (A1.7) 
m - - 1  

Q = ( i / m )  E Q(j)- (A1.8) 
j = l  

It is easy to check that the projection operator Q is 
complementary to P, i.e. 

Vn = Ker P + Im P 

= KerQ(J) + I m Q ( J )  j = 1 , . . . , m -  1. (A1.5) 

The subspace Ker P of V,~ consists of all those vectors 
that P maps onto the zero vector and the subspace Im 
contains the images of all vectors from Vn. The meaning 
of Ker Q(J) and Im Q(J) is analogous. 

We note that if an integer 0 < j l  < m has no common 
divisor with m except 1, i.e. if each element of Cm can 
be expressed as a power of gJl, then the only vector 
involved simultaneously in K e r P  and Ker Q(Jt) is the 
zero vector 0. This can be proved as follows: 

Assume that v E Ker QJx M Ker P, i.e. Q J1 v = P v  = 
0. Hence, gJxv = v. Since -P = I + gJl + gJl 2 + ... + 

jim--1 
9 , then -ffv =_ m v  = 0. Taking into account (A 1.4), 
one has 

Lemma A 1.1 

If 0 < j l  < m and m are mutually prime, then 

K e r P  = ImQ(Jl) and I m P  = KerQ(J,). (A1.6) 

The action of Cm on Im P is trivial. 
The assumption of this lemma is obviously fulfilled 

by j l  = 1. Hence, g . t  = t  for a n y t  E I m T a n d t h e  
second part of the lemma follows. 

It may happen that the greatest common divi- 
sor d of an integer 0 < j2 < m and of m is 
greater than 1. If so, one introduces the operator 
e(d)  = I + gd ..1_ ( g d )  2 + ... + (gd)m/d-1 and, by anal- 

ogous reasoning, one finds that KerP(d) = ImQ(J2), 

Q = I -  P. (A1.8a) 

One has Ker P = Ker P = Im Q = Im Q and Ker Q = 
KerQ = I m P  = I m P .  Moreover, since Q(J) = 
( I - g )  ( I + g + . . . + g j - 1 ) ,  for each j ,  Q can be expressed 

as a product of two operators, Q and Q, 

Q = Q - Q ,  (A1.9) 

where we have put Q - Qo) and Q is given as 

Q = ( 1 / m ) [ I  + ( I  + g) + ( I  + g + g2) + ... 

+ (I  + g + g2 + ... + gin-2)]. (AI.10) 

After making some rearrangements in (A1.10), one gets 
an alternative expression for Q: 

L z) + R], 

m = 2  
( A I . l l )  

m > 3 ,  

where the linear operator R is defined as 

rn--1 

R - E aJgJ 
j=o 

OLm_ 1 : - 1 ,  OLin_ 2 = O~ 

=  m-3-k = (k + 1 ) ( m -  2 -  k) /m,  

0 <_ k < m / 2 .  (Al.12) 
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Lemma A 1.2 
m 

The linear operator Q is regular, i.e. -Q e GL(Vn). 
For m = 2, the proof is obvious. Let m > 3 and 

assume v E Ker Q, i.e. Qv = 0. Writing v = Pv + Qv, 
from (A1.9), one finds, by assumption, that v = Pv. 
Equalities (A1.11) and (A 1.4) imply that Qv =_ -QPv = 
( m -  1)/2v = 0 and the statement follows. 

Consider now an n-dimensional lattice T C_ V,~ 
generated by al,  ...,an. One can always produce free 
Abelian groups To - T N V °, T O - P T, T1 -- 
T fq V 1 and T 1 - Q T. The groups To and T1 as 
well as the groups T O and T 1 have only the zero 
vector in common and so one can form the direct 
sums To + T1 and T O + T 1. It follows directly that 
To + T I C  T C_ T O + T 1. Among the projections 
P am, ..., P an and Q am, ..., Q an that generate T O and 
T l, respectively, there are always dim V ° and dim V 1 
linearly independent vectors. However, the number of 
free generators of T O and/or T 1 may be, in contrast to T, 
greater than the number of linearly independent vectors 
involved so that the corresponding group will not be a 
discrete subgroup of Vn. 

Lemma A 1.3 

If Cm is a subgroup of the Bravais group of T, then 
To + T1 as well as T o + T 1 are n-dimensional lattices. 

By assumption, T is Cm invariant so that the linear 
operators P and Q map T homomorphically onto sub- 
groups T~ - P T and T~ - Q T. The commutativity 
of the group ring implies that both T~ and T~ are 
invariant under the action of Cm. By the definition of the 
projection operators, we have T O = 1/mT~ and T 1 = 

QTy. Therefore, if bl, ...,b,~ o freely generate T~, then 
1/m bl, ..., 1/m b,~ o freely generate T °. Furthermore, if 

Cl, ..., cn~ freely generate T~ then QCl, . . . ,Qc,~ freely 
generate T 1. On the other hand, since al, . . . ,an is a 
basis of Vn, the projections Pai ,  ..., Pan must generate 
not only T O but also V °. Hence, no = dim V °. By an 
analogous argument for the projections Q al, ..., Qan, 
we have nl = dim V 1. Since T~ and T O have equal 
rank and T~ C_ To C_ T O , it follows that the group 
To must also be freely generated by no vectors; by an 
analogous reasoning, one finds that the group T1 is freely 
generated by nl vectors. Considering that all the groups 
in question a r e  C m invariant and that no + ni = n, 
it follows that T~ + T~, To + T1 and T O + T 1 are 
n-dimensional lattices invariant under Cm. 

We note that an alternative proof is given by Engel 
(1986) using theorem 7.2, according to which the lattice 
vectors freely generating T~ and T~ form a basis of V ° 
and V 1, respectively. The lemma then directly follows 
from the definition (A1.7) of P and the decomposition 
(A1.9) of Q. 

APPENDIX 2 
Generation of a two-generator 

subgroup of a finite group 

In order to determine all the elements of a finite ~'oup 
G given by means of s > 1 generators, say g l , . . . . ,gs ,  
one has to compute for each integer k > 2 all products 
gi~ . . .  gik of the g's up to some integer k0. The exis- 
tence of such an integer follows from the finite order 
of G. Proceeding in this way, for each k < k0, one 
has to compute s k products of the given generators. 
Even for a small number s of generators and a not 
too large value of k, the number s k will be quite large. 
Moreover, some of the elements of G will be produced 
many times. Such an algorithm would be very inefficient. 
Therefore, we supply a step-by-step algorithm for s = 2 
that reduces superfluous calculations; this algorithm can 
easily be extended to the case of an arbitrary s, which is 
shown at the end of this Appendix. In order to pre~ent 
such an algorithm, we first introduce a possible method 
of proceeding in the case of two generators only. "~is 
will serve as a basis for establishing a more efficient 
algorithm. 

Consider a finite group G and choose two elements 
of it, say gl and 92, such that neither of them is a 
power of the other. All powers of gl and g2 form cyclic 
subgroups of G, say C 1 and C 2, respectively. The two 
cyclic groups generate a subgroup C I U C 2 of G, each 
element of which can be expressed as a finite product of 
symmetry operations, belonging either to C 1 or to C '2. 
Such a product can always be rearranged into a form 
in which all even positions are occupied by elements of 
one group while elements of the other group occur on 
the odd positions. 

We denote by B~ k), k > 2, the set of all prod- 
ucts h l h 2 . . . h k ,  where hk, hk -2 , . . .  E C 1 and 

h k - l , h k - a , . . .  E C 2, and by B~ k), k > 2, the 
set of all products of the above form, where, in 
turn, hk, hk -2 , . . .  E C 2 and h k - l , h k - a , . . .  C C 1. 
Furthermore, we put B~ l) = C 1 and B~ l) ~ C 2. One 
has the following recursive relations among the B's.  

- -  ; f D ( 2 / - - I ) / ~  I .  h I B[eO-{hZB[ et-1) h e e C2}=l,_,e ,o,  e C l} 

B(2t+l)={hlB~2l)'hl e C I } -{B~2t)hl  h 1 e C I } I ~ ; 
B~2l):{B~2l-1)h2;h2 e C2}= {hlB(221-i);hl e C 1} 

B(2t+')={B~2Oh2;h2 e C 2} {h2B~ 20 h 2 e C2}, 
2 - -  ; 

l >  1. (A2.1) 
These recursive relations enable one to determine all sets 
B~ k) and B~ k) in a step-by-step manner, using the groups 

n(k-1) which C 1 and C 2 and, for k > 2, also the set *-'i , 
was computed in the preceding step. Considering that 
the identity belongs to both groups C 1 and C 2, one has 

_ , _ / : ~ ( k +  l )  B ? )  , 
B~ k) C n (k+l) B~ k) C n(k+l) (A2.2) 

- -  * " 1  ~ - -  *-"2 • 
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Consequently, empty, put k0 = k~ - 1; otherwise, k0 - k~. Then, 

_ ~(~+1) B~ ~+1). (A2.3) B~k) U B~ ~) C ~ n 

Being a subgroup of a finite group G, the group 
C ~ U C 2 is also finite and, hence, there exists an 
integer ko such that each element of C 1 [..J C 2 must 
be expressible as a product of at most k0 elements 
belonging to either C 1 or C 2. In view of (A2.2) and 
(A2.3), one has 

C 1 tJ C 2 c_ B~k°) U Bi k°) C_ B~ k°+l) C1 Bi k°+l). 
(A2.4) 

We assume ko to be the minimal integer for which (A2.4) 
is satisfied. Then, after ko steps in each of which the sets 
B~ k) and B~ k), 1 < k < ko, are determined, one obtains 
all the elements of the group C 1 u C 2. 

Owing to the inclusions (A2.2), all those elements of 
C ~ U C 2 that were already determined in the kth step will 
be recalculated in any further step. To avoid superfluous 

calculations, we introduce reduced sets B(1 k) and ~ k )  
for each k in the following way: 

The set ~ 1 )  is obtained from C '~ by deleting identity 

element 1 and the set ~ 1 )  contains all those elements 
of C 2 that are not involved in C 1. For k >_ 2, we 

define ~ k )  to be the set of all elements of B~ k) that 

do not occur in B~ k-l)  U B~ k-l) and ~ k )  to be the 

set of all elements of B} k) that are contained neither in 

B~ k-~) t_J B~ ~-1) nor in B~ ~). Consequently, relations 
(A2.2) will no longer be valid for the barred sets. Instead 
of (A2.1), one has 

B(12/)C {h2-B~21-1);h2 E ~1)}, {.-~21-1)hl;hl E B(11) } 

~(2Z+l) {h1~(120 hi 1 C_ ; 6 B(11)}, {-B~2t)hl;hl 6 ~ 1 ) }  

-~2l) C _{-~(121-1)h2;h 2 ~ ~1)},{h1-~21-1) hi ~ ~(11)} 

~(2t+1) h2 

l > 1. (A2.5) 
We emphasize that there are two convenient ways to 
obtain the barred sets: compute either the sets in the left 
column or in the right column in (A2.5). If we choose the 
left column, then we have to omit from B~ k) all those 
elements simultaneously contained in B~ k) since, owing 
to the recursive relations, these elements will yield, when 
multiplied, elements of B~ k) in the next step. If the right 
column is chosen, one has to interchange the roles of 
B~ k) and B~ k). The definition of the barred sets together 
with relations (A2.4) and (A2.5) directly imply: 

Lemma A2.1 

Let k~ be the smallest integer for which at least one 
--(kx) --~(k,) 

of the sets B 1 and ~2  is empty. If both sets are 

C1 u 62 = \k=l(O B~k) u B~k)) U { I } "  

Accordingly, after k0 steps in each of which all the 
products of k elements, 1 < k < k0, involved either in 

B(1 k) or in ~ k )  are computed, one obtains all elements 
of C 1 t_) C 2. 

We note that, instead of the cyclic subgroups C 1 
and C 2 of G, any two subgroups F 1 and F 2 of G 
can be used to obtain all the elements of the group 
F 1 U F 2. Using this fact, one can directly extend 
the above algorithm to the case of s > 2 generators 
g l , . . . , g s .  In the first step, one proceeds as described 
above with gl _ gl and g2 = g2 in order to obtain a 
subgroup C 1 U C 2 generated by the first two generators. 
Then, one checks whether ga belongs to C 1 U C 2 or 
not. If it does, one takes the next generator. If not, 
one repeats the first step with F 1 -= C 1 U C 2 and 
F 2 ~ C 3 = {I  = (g3)m3,ff3,(g3)2,...,(g3) m3-1} in 
order to generate the group (C 1 U C 2) U C a. Proceeding 
in such a way with the remaining generators of the finite 
group G, one finally obtains all group elements. 

APPENDIX 3 
An algorithm to determine free generators 

of a subgroup of a free Abelian group 

We consider a free Abelian group A of rank n, freely 
generated by a l , . . . ,  an. Let B denote a subgroup of A 
generated by bl, ..., bm,. As is any subgroup of A, B is 
also a free Abelian group of rank m _< m' .  According to 
the fundamental theorem on subgroups of free Abelian 
groups (Magnus, Karrass & Solitar, 1966), there exist 
free generators ~i, i = 1, ..., n, for A and m non- 
zero integers dl, . . . ,dm, where dj divides dj+l ,  such 
that dj-dj, j = 1, ..., m, freely generate B. This implies 
that there is a unique direct summand D _D B of A 
in which B is of finite index. The direct summand D 
is freely generated by ~j, j = 1, . . . ,m,  so that the 
index [D • B] equals the product of all the d's, i.e. 
[D • B] = dl x . . .  x din, and the finite factor group D / B  
is isomorphic to the direct product of cyclic groups Cdj, 
j = 1, ..., m, i.e. 

D / B  ~ Cdl x . . .  × Cd,~. (A3.1) 

The orders of these cyclic groups are invariants of D / B .  
Magnus, Karrass & Solitar (1966) give an algorithm to 

establish the above-mentioned generators gi, i = 1, ..., n, 
of A and the m integers d j, j = 1,..., m. We remark that 
the original purpose of the algorithm was to convert a 
presentation of a given group (as a factor group of a 
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free group by a normal subgroup spanned by defining 
relators) into a pre-Abelian presentation• 

Consider a non-trivial cyclic subgroup C = {1 = 
gO = gk,g ,  g Z . . . , g k - 1 ; k  >_ 2} of the point group G 
of the given space group G. One can use this algorithm to 
determine vectors freely generating the direct summands 
To and T1 of the translational subgroup T of G starting 
from generating vectors of their_ subgroups of finite 
index, T~ = P T and T~ = Q T, respectively (cf. 
proof of lemma A1.3). However, it is not necessary to 
have vectors freely generating To and T1 that possess 
the above properties concerning the integers d l , . .  •, d i n .  

Therefore, to cut out some calculations involved, we 
modify the algorithm to obtain an alternative set of 
free generators ~i, i - 1,..., n, of A together with the 
corresponding m integers e~, j - 1,..., m, such that the 

m elements bj - ej a~ freely generate B. The integers 
e l , . . . , e m  are not supposed to satisfy any particular 
condition; their product must, of course, be equal to the 
product of all the d's since it gives the index of B in 
D. Instead of (A3.1), one has 

D / B  ~_ C~, x . . .  x C ~ ,  (A3.2) 

which is one possibility, among others, of expressing 
the finite Abelian group D/B as a product of m cyclic 
subgroups. 

The algorithm is based on the so-called Nielsen trans- 
formations (Magnus, Karrass & Solitar, 1966) that take 
one m'-tuple of elements of A into another m'-tuple such 
that both m'-tuples generate the same subgroup of A• m' 
may be any positive integer and is said to be the rank 
of the Nielsen transformation in question. In order to 
define Nielsen transformations, one introduces first the 
concept of elementary Nielsen transformations (Magnus, 
Karrass & Solitar, 1966). One usually considers three 
(or four) standard kinds of elementary Nielsen trans- 
formations; two kinds will be given below explicitly. 
Under a Nielsen transformation, one then understands 
an operation, bringing an m'-tuple of elements of A 
into another such m'-tuple, which can be produced by 
a sequence of a finite number of elementary Nielsen 
transformations. 

We note that this algorithm represents also a con- 
structive proof of the existence of the free generators 
for A, B and D as mentioned above. According to this 
proof (Magnus, Karrass & Solitar, 1966), there exists a 
Nielsen transfonnation of the n-tuple [at,•.•, an] and 
a simultaneous Nielsen transformation of the m'-tuple 
[b l , . . . ,  bin, l, which yields the generators in question• In 
fact, this algorithm provides a way of obtaining each of 
these two Nielsen transformations as a finite sequence 
of elementary Nielsen transformations. 

In the modified algorithm, we use the two following 
kinds of elementary Nielsen transformation 

Consider an arbitrary m'-tuple [bl, ..., bm,] of ele- 
ments of A. The elementary Nielsen transformations Bk,t 

and Bk,l act on this m'-tuple as follows: 

"t 

Bk,t : [b l , . . . , bk , . . . , bm, ]  , [ b l , . . . , b k  + b t , . . . , b m  ~ 

Bk,t : [ b l , . . . , b k , . . . , b m , ]  , [ b l , . . . , b k - b l , . . . , b , , , , i  
(A3.3) 

where k , l =  1 , . . . , m ' ,  k ¢ I .  
The elementary Nielsen transformations can conve- 

niently be translated into matrix form. Following Mag- 
nus, Karrass & Solitar (1966), we introduce a titled 
n x m'  integral matrix R = (rij),  

b j  = ~ rijai,  j = 1,..., m' .  
i = l  

The following titles are introduced for each row and for 
each column: bj for the j th  column, and ai for the 'tth 
row. Then, one can write the matrix R as 

b l  . . .  bk  . . .  b m ,   /11 . . . .  r l  1 / 
R = a j  r j l  . . .  r j k  . . .  r i m ,  . 

• • • , . 

a n  T n l  • • • r n k  • • • r n m '  

We remark that this matrix is simply a translation of 
the so-called titled exponent sum matrix defined in the 
original algorithm (Magnus, Karrass & Solitar, 1966) for 
the case of free Abelian groups. 

To each elementary Nielsen transformation, applied 
either to the a 's  or to the b's, there corresponds a unique 
transformation of the titled matrix. If B.,. is performed 
on the a's, then just two rows are affected: 

g • ~ ai --* ai + a j  
]3i,j ( r j k  --+ r j k  - -  r i k ~  k = l , . . . , m ' •  

(A3.4) 

In the case of the b's only one column is changed: 

Bk z " ~ bk -* bk + bz 

' l r J k  --* r j k  q - r j l ,  j = l , . . . , n .  
(A3.5) 

One can directly obtain analogous expressions for B.,.. 
In terms of the titled matrix R, the problem is to 

find such a sequence of transformations B.,. and B.,. 
that will take the titled matrix R into a new titled matrix 
R that has as many non-zero entries as the rank rn of 
the matrix with the titles omitted. The non-zero entries, 
say el - rj, k , , . . . ,e , . r ,  - rj,r,k .... will identify those 
free generators a j , , . . . ,  aim of A that generate the direct 
summand D of A that contains B as a subgroup of finite 

index; the elements ~k, = e l  ~ J l , . . . , - b k m  --- e m  ~ j , ~  

then freely generate B. 
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The algorithm to obtain the resulting titled matrix R, 
starting from the titled matrix R, consists of m steps in 
each of which an integer ei and a free generator ~j, of T, 
i E { 1 , . . . ,  rn}, are produced. We describe the first step. 

We suppose that at least one of the b's is non-zero 
to exclude the trivial case. We choose an entry rij of 
/i~ as follows: 

(1) Its absolute value is equal to the minimum of the 
absolute values of all non-zero entries of R. If there are 
several such entries, condition (2) is applied. 

(2) Its column subscript j is not less than the col- 
umn subscripts of other entries satisfying condition (1). 
If the j th  column contains several such entries, say 
r i l j , . . .  ,rikj,  condition (3) is applied. 

(3) Its row subscript i is the greatest of the row 
subscripts i ~ , . . . ,  ik. 

Selecting an element rij of R will be called a full- 
matrix choice procedure. 

Then, we repeatedly apply the elementary Nielsen 
transformations Bk,j or Bk,j to the b's and their trans- 
forms (i.e. we either add or subtract the j th  column to 
or from the kth column, respectively) for such k ~ j 

1 for which Ir~kl ___ ~ Ir~jl until all the entries of the 
ith row are, in absolute value, less than or equal to 
i ]rij[. After each elementary Nielsen transformation, 9 
the column titles are appropriately changed according 
to (A3.5). 

Next, we select a new non-zero entry r~j, of the / th  
row applying conditions (1) and (2) to the / th  row. We 
call this way of selecting an entry of R a column choice 
procedure relative to the / th  row. 

Using again the elementary Nielsen transformations 
Bk,j or /3k,j, one makes all entries of the ith row, 
in absolute value, less than or equal to ~lr~j'l and 
one changes simultaneously the column titles in an 
appropriate manner. Then, one applies the column choice 
procedure relative to the / th  row to select a new entry 
of the/ th row and repeats the above procedure with that 
entry. In such a way, one proceeds until, after a finite 
number of steps, only one non-zero entry of the/ th row 
is left, say rG; its absolute value is equal to the greatest 
common divisor of all entries of the / th  row. If there is 
no other non-zero entry in the j th  row, the step is over. 
One has el - Ir~TI and a--j~ _= ai (since the row titles 
have not changed). 

Otherwise, one applies the elementary Nielsen trans- 
formations /3k,~ or /3k,~ to the a 's  to make all entries 

1 of the ~th colunm less than or equal to ~lr~;I. One 
proceeds in the same way as above, but with the roles 
of rows and columns interchanged, and transforms the 
row titles according to (A3.4). Instead of the column- 
choice procedure relative to the ith row, one analogously 
introduces a row choice procedure relative to the ffth 
column. As a result, one obtains only one non-zero entry 
in the j th  column, say ru;  its absolute value equals the 
greatest common divisor of all entries of the ith row and 

~th column. If r ~  is the only non-zero entry in the ~th 

row, then the step is over so that e l  --= Ir-i--~ijl and aj, is 
given by the title of the ~th row. 

Otherwise, one repeats the whole procedure starting 
with the ith row as an initial one. After finitely many 
steps, one arrives at an entry r-~., which is the only non- 

~3 

zero entry in the ~th row as well as in the j th  column; its 
absolute value is equal to the greatest common divisor 
of all the entries OCCUlTing in the rows and columns to 
which the column- or row-choice procedure was applied. 
One then has el ----- Ir~l and a--j1 is given by the title of 

the ~th row. 
Since after this step one obtains one row and one 

column, each containing only one non-zero entry so 
that the zero entries form in most cases a more or less 
symmetric cross, we call this a cross-nulling procedure. 

Using a cross-nulling procedure, one transforms the 
matrix R = R (°) into a titled matrix R'. From R'  we 
omit both the row and column that constitute a 'cross' 
in order to get a new titled matrix R (1) upon which 
the next step is performed. As above, we use the full- 
matrix choice procedure to choose a starting entry of 
R (1) and then perform the cross-nulling procedure with 
R (1). After m steps, where m is the rank of R, one 
arrives at a titled matrix R (m), which must contain only 
zero entries. As a result, one obtains the required m 
integers e l , . . . ,  em and n new free generators of T, m of 
which are determined in the m steps, and the remaining 
n - m ones are given by the row titles of R (m). The m 
new generators freely generate the corresponding direct 
summand of T, either To or T1. 

We note that the titled matrix R into which the original 
matrix R is transformed under simultaneous Nielsen 
transformations of the a 's  and of the b's is composed 
of the 'crosses' (and the corresponding titles), omitted 
in the above way, and of the titled matrix R (m). 
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